Definition: Let $m \in \mathbb{N} \backslash\{0\}$. The equivalence classes defined by the congruence relation modulo m are called residue classes modulo m. For any $a \in \mathbb{Z}$, $[a]$ denotes the equivalence class to which a belongs, i.e.

$$
[a]=\{b \in \mathbb{Z} \mid a \equiv b \quad \bmod m\}
$$

Congruences as equivalence relation. Let $m \in \mathbb{N} \backslash\{0\}$. The congruence relation modulo m is an equivalence relation, i.e., it satisfies the following properties for any $a, b \in \mathbb{Z}$.

1. Reflexivity: $a \equiv a \bmod m$
2. Symmetry: If $a \equiv b \bmod m$, then $b \equiv a \bmod m$
3. Transitivity: If $a \equiv b \bmod m$ and $b \equiv c \bmod m$, then $a \equiv c \bmod m$.
\mathbb{Z}_{p} is the set of integers modulo p.
In reality the elements of \mathbb{Z}_{p} are equivalence classes, i.e.,

$$
\mathbb{Z}_{p}=\{[0],[1], \ldots,[p-1]\}
$$

However, we often write

$$
\mathbb{Z}_{p}=\{0,1, \ldots, p-1\} .
$$

Consider \mathbb{Z}_{8}. Is it possible to have $a, b \in \mathbb{Z}_{8}$ with $a \neq 0$ and $b \neq 0$, but $a \cdot b=0$?

Intuitively, a field is a set with two operations, denoted by "+" and ".", that has many of the properties that Q has.

Theorem.

Let p be a prime number. Then $\forall x \in \mathbb{Z}_{p} \backslash\{0\}, \exists y \in \mathbb{Z}_{p}$, such that $x \cdot y \equiv 1$.

Is the assumption p-prime necessary?

Exercise.

Find the multiplicative inverse for each of the elements in \mathbb{Z}_{5}.
Can this be done for \mathbb{Z}_{6} ?

Exercise.

Let p be a prime integer. What is the multiplicative inverse of $x \in \mathbb{Z}_{p} \backslash\{0\}$? Hint: Use Fermat's Little Theorem.

Assume p is prime. Can you show that the multiplicative inverse of every nonzero element $x \in \mathbb{Z}_{p}$ is unique?

