Definition: Let $m \in \mathbb{N} \setminus \{0\}$. The equivalence classes defined by the congruence relation *modulo* m are called **residue classes modulo** m. For any $a \in \mathbb{Z}$, [a] denotes the equivalence class to which a belongs, i.e.

$$[a] = \{ b \in \mathbb{Z} \mid a \equiv b \mod m \}$$

Congruences as equivalence relation. Let $m \in \mathbb{N} \setminus \{0\}$. The congruence relation modulo *m* is an equivalence relation, i.e., it satisfies the following properties for any $a, b \in \mathbb{Z}$.

- 1. Reflexivity: $a \equiv a \mod m$
- 2. Symmetry: If $a \equiv b \mod m$, then $b \equiv a \mod m$
- 3. Transitivity: If $a \equiv b \mod m$ and $b \equiv c \mod m$, then $a \equiv c \mod m$.

\mathbb{Z}_p is the set of integers modulo p.

In reality the elements of \mathbb{Z}_p are equivalence classes, i.e.,

$$\mathbb{Z}_p = \{[0], [1], ..., [p-1]\}.$$

However, we often write

$$\mathbb{Z}_p = \{0, 1, ..., p-1\}.$$

Consider \mathbb{Z}_8 . Is it possible to have $a, b \in \mathbb{Z}_8$ with $a \neq 0$ and $b \neq 0$, but $a \cdot b = 0$?

Intuitively, a field is a set with two operations, denoted by "+" and ".", that has many of the properties that Q has.

Theorem.

Let p be a prime number. Then $\forall x \in \mathbb{Z}_p \setminus \{0\}, \exists y \in \mathbb{Z}_p$, such that $x \cdot y \equiv 1$.

Is the assumption *p*-prime necessary?

Exercise.

Find the multiplicative inverse for each of the elements in \mathbb{Z}_5 .

Can this be done for \mathbb{Z}_6 ?

Exercise.

Let p be a prime integer. What is the multiplicative inverse of $x \in \mathbb{Z}_p \setminus \{0\}$? *Hint:* Use Fermat's Little Theorem.

Assume p is prime. Can you show that the multiplicative inverse of every nonzero element $x \in \mathbb{Z}_p$ is **unique**?